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Abstract

An elementary theory for non-linear vibrations of viscoelastic sandwich beams is presented. The
harmonic balance method is coupled with a one mode Galerkin analysis. This results in a scalar complex
frequency–response relationship. So the non-linear free vibration response is governed by only two complex
numbers. This permits one to recover first the concept of linear loss factor, second a parabolic
approximation of the backbone curve that accounts for the amplitude dependence of the frequency. A new
amplitude–loss factor relationship is also established in this way. The forced vibration analysis leads to
resonance curves that are classical within non-linear vibration theory. They are extended here to any
viscoelastic constitutive behaviour.

This elementary approach could be extended to a large class of structures and in a finite element
framework. The amplitude equation is obtained in closed form for a class of sandwich beams. The effects of
the boundary conditions and of the temperature on the response are discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Typical viscoelastically damped structures are of sandwich construction in which a thin
viscoelastic layer is sandwiched between identical elastic layers. These structures are used in many
areas (e.g., aerospace industry) for vibration and noise control thanks to their superior capability
in energy absorption. They particularly offer the advantage of high damping with low weight
addition. The interlayer damping concept is highly compatible with the laminated configuration
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of composite structures and with their fabrication techniques and provides an effective way to
reduce vibrations and noise in structures. The damping is introduced by an important transverse
shear in the viscoelastic layer. It is due to the difference between in-plane displacements of the
elastic layers and also to the low stiffness of the central layer.

Many investigations have been devoted to the linear dynamic analysis of these structures. Their
stiffness matrix is a complex one and it depends non-linearly on the vibration frequency. So, the
linear vibration analysis leads to a non-linear complex eigenproblem. Solving this problem yields
firstly, complex modes that can be slightly different from undamped modes and secondly, complex
eigenvalues whose real and imaginary parts are related to the loss factors and to the viscous
eigenfrequencies. From an engineering point of view, the most relevant quantity is the loss factor
that is associated with any mode. Several methods have been presented to predict these structural
damping properties: some analytical studies [1–9] were devoted to simple structures, and finite
element simulations [10–21] were introduced to design structures with complex geometries and
generic boundary conditions. The simplest technique is the modal strain energy method [11] that
defines a rather good estimate of the loss factor from a sort of one mode Galerkin approximation.
In most of these studies the viscoelastic behaviour is simply accounted for by a complex modulus,
but nowadays one is able to compute the loss factor with any linear viscoelastic constitutive
law [19].

It must be stressed, however, that non-linear systems can show a behaviour that is qualitatively
different from that of linear systems and the behaviour for large amplitudes can differ significantly
from the behaviour for small amplitudes [22,23]. The frequency of non-linear elastic systems
depends on the vibration amplitude. In a first approximation, the so-called backbone curve is
parabolic as follows:

o
oL

� �2

¼ 1 þ C
a

h

� �2

; ð1Þ

where o is the non-linear frequency, a is the vibration amplitude, oL is the linear frequency and h
is a typical length such as plate thickness. Thus, the non-linear dynamic response of a structure
can be represented by a single non-dimensional number C that is a sort of non-linear dynamic
stiffness. The harmonic balance method is an elementary way to characterize this non-linear
response as well as the evolution of the mode itself [24–26]. Nevertheless, this technique is too
intricate in view of a simple engineering analysis. In this respect, the harmonic balance method has
to be coupled with a single mode Galerkin approximation. The coupling of the two
approximations (harmonic balance, one spatial mode) leads to representation (1) of the backbone
curve. One may refer for instance to Refs. [27,28] for a discussion of the validity of the latter
approximation.

However, there are only few studies about the non-linear analysis of damped vibrations of
sandwich structures. Kovac et al. [29] and Hyer et al. [30,31] studied the non-linear vibrations of
damped sandwich beams. The non-linear damped free vibrations of sandwich plates and
cylindrical panels have been investigated by Xia and Lukasiewicz [32,33]. These analyses are based
on multimode Galerkin’s procedure and harmonic balance method; the main limitation lies in the
viscoelastic model that is of the Kelvin–Voigt type. More recently, Ganapathi et al. [34]
introduced the concept of a loss factor that depends on the amplitude. They considered flexural–
torsional motions of beams and plates and their analysis is similar to that of many recent papers
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about linear damping of structures: finite element framework, damping accounted by a complex
modulus, complex eigenproblems solved by the QR method.

The goal of this paper is to establish the simplest consistent theory for the non-linear vibration
analysis of a viscoelastic sandwich beam. The non-linearity arises from axial stretching of the
elastic face layers and the damping from the shear deformation of the viscoelastic core. The
starting sandwich model and the mathematical treatment are chosen in order to provide
the simplest consistent theory. Thus, the present study is limited to periodic or damped responses
and couples the harmonic balance method with a one mode Galerkin approximation. The result is
an amplitude equation that is similar to a classical bifurcation equation:

�o2MA þ KA þ KnlAjAj2 ¼ Q; ð2Þ

where A is the unknown complex amplitude and Q is the modal force. Then, for each mode, the
free vibrations depend on three constants M;K ;Knl : M is a sort of modal mass. The complex
constants K and Knl are, respectively, a linear and a non-linear stiffness. This implies that the free
vibrations are governed by two complex constants K=M and Knl=M: The physical meaning of
these constants, which can be connected with the aforementioned concepts: loss factor, backbone
constant C appearing in Eq. (1) and non-linear damping will be discussed. In the forced vibration
case, Eq. (2) permits one to recover classical resonance curves, that are deduced here for any
viscoelastic stress–strain law.

2. A non-linear model for three-layered viscoelastic beam

The simplest possible model that is able to account correctly for the effect of geometrical non-
linearities on the response of an elastic/viscoelastic/elastic sandwich beam is presented. The basic
assumptions are consistent with the classical linear sandwich analysis [5]: the two elastic layers
remain parallel and there is a shear strain that does not vary across the thickness of the
viscoelastic core. A unique laminate model based on Bernoulli or Timoshenko kinematical
assumptions would be simpler, but it would underestimate the shear strain in a soft core.
Sometimes more refined descriptions of the stress field in the core are considered for aeronautical
structures (see for instance Ref. [34]), but this is not necessary in the case of a thin and soft core.
The geometrical non-linearity is represented according to the classical framework of small strain
and finite deflection [25].

2.1. Kinematics of the model

Consider a three-layer symmetric sandwich beam with a viscoelastic core as pictured in Fig. 1.
Let x be the mid-surface co-ordinate of the undeformed beam and z is the one transverse to
the thickness. Let zi be the co-ordinate of the middle of the layer i: Because of symmetry,
z1 ¼ ðhf þ hcÞ=2 ¼ �z3; z2 ¼ 0: hf is the thickness of the elastic layer and hc denotes the thickness
of the core. In order to evaluate accurately the damping in the sandwich structures, one has to
take into account the shear deformation in the viscoelastic layer. This shear results from the
difference between the in-plane displacements of the elastic layers. So, the following hypotheses,
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common to many authors [5–9], are assumed:

* All points on a normal to the beam axis have the same transverse displacement wðx; tÞ:
* The displacement is continuous along the interfaces between central and elastic layers.
* All points of the elastic layers on a normal have the same rotations.
* The core material is homogeneous, isotropic and viscoelastic. So, the Young’s modulus is

complex and depends on the vibration frequency. As in most analyses, the Poisson ratio uc is
assumed to be constant.

* The elastic layers have the same Young modulus Ef :

Assuming negligible shear deformation in the face layers, the longitudinal and transverse
displacement Ui and Wi at any point within the face layers may be written as

Uiðx; z; tÞ ¼ uiðx; tÞ � ðz � ziÞ
@w

@x

Wiðx; z; tÞ ¼ wðx; tÞ
i ¼ 1; 3; ð3Þ

where uiðx; tÞ is the axial displacement of the middle of the ith layer and wðx; tÞ is the common
transverse displacement. As in Ref. [8], the displacement of the central layer is written in the
following form:

U2ðx; z; tÞ ¼ uðx; tÞ þ zbðx; tÞ;

W2ðx; z; tÞ ¼ wðx; tÞ ð4Þ

where uðx; tÞ is the axial displacement of the centreline of the core and b is the rotation of the
normal to the mid-plane in the viscoelastic core. Remember that the transverse displacement is
assumed to be the same for any layer. According to the assumption of small strains and moderate
rotations, the non-linear strain–displacement relations for each layer are assumed in the following
form [25]:

eiðx; z; tÞ ¼
@ui

@x
þ

1

2

@w

@x

� �2

�ðz � ziÞ
@2w

@x2
; i ¼ 1; 3;

e2ðx; z; tÞ ¼ eðx; tÞ þ z
@b
@x

; eðx; tÞ ¼
@u

@x
þ

1

2

@w

@x

� �2

: ð5Þ
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Fig. 1. Sandwich structure with viscoelastic middle layer.
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2.2. Constitutive behaviour

According to Hooke stress–strain relation, the axial forces and bending moments in the elastic
layers are expressed as

N1 ¼ Ef Sf
@u1

@x
þ

1

2

@w

@x

� �2
 !

;

N3 ¼ Ef Sf
@u3

@x
þ

1

2

@w

@x

� �2
 !

;

M1 ¼ M3 ¼ Ef If
@2w

@x2
; ð6Þ

where Sf is the cross-section area and If is the second moment of the faces.
A general linear viscoelastic constitutive law is assumed for the core. Classically, such a law

involves convolution products [30,31,36]. For instance, the relation between the axial strain and
stress can be written in the form of a convolution product:

s2ðx; tÞ ¼
Z t

�N

Y ðt � tÞ
@

@t
eðx; tÞ dt ¼ Y�

@e
@t
; ð7Þ

where Y is the relaxation function of the viscoelastic material. In the following, the constitutive
viscoelastic law will be used when the strain is a combination of various harmonics oj

as follows:

eðx; tÞ ¼
Xk

j¼1

feðx; jÞeioj t þ CCg; ð8Þ

where CC denotes the conjugate complex. In the next part, splitting (8) will follow from the
assumption of a harmonic deflection and not from a superposition principle as in a linear
framework. The beam equations can be deduced from Eqs. (7), (8) and by introducing the normal
force in the core N2: After some manipulations, one gets

N2ðx; tÞ ¼
Xk

j¼1

fN2ðx; jÞeioj t þ CCg;

N2ðx; jÞ ¼ ScEcðojÞeðx; jÞ;

EcðojÞ ¼ ioj

Z þN

0

Y ðxÞe�iojx dx; ð9Þ

where Ec is the complex Young modulus and Sc is the cross-section area of the core. Constitutive
laws for the bending moment M2 and the shear force T of the core are obtained using the
same procedure. Note that a Timoshenko shear coefficient is not necessary in such sandwich
structures [5].
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M2 ¼ IcY�
@

@x

@b
@t

	 

;

T ¼
Sc

2ð1 þ ucÞ
Y�

@

@x

@w

@t
þ

@b
@t

	 

: ð10Þ

2.3. Balance of momentum

Bernoulli and Timoshenko kinematical assumptions have been considered for the faces and for
the core, respectively. Hence, the virtual work principle for a geometrically non-linear sandwich
can be written by assembling the virtual work equations of the three layers, each one being a non-
linear beam. This leads to

X3

i¼1

Z L

0

Ni

@dui

@x
þ
@w

@x

@dw

@x

� �
dx þ

Z L

0

ðM1 þ M3Þ
@2dw

@x2
þ M2

@db
@x

� �
dx

þ
Z L

0

T
@dw

@x
þ db

� �
dx ¼ dPext � dPacc; ð11Þ

where Pext is the potential energy of the external load and dPacc is the virtual work of inertial
terms. It is customary to neglect the influence of axial inertia effects when dealing with flexural
response of beams [24,28]. Thus, expressions of Pext and Pacc are

dPext ¼
Z L

0

F ðx; tÞdwðx; tÞ dx;

dPacc ¼ ð2rf Sf þ rcScÞ
Z L

0

@2w

@t2
dwðx; tÞ dx ð12Þ

in which F ðx; tÞ is the external load and rf and rc are the mass density of faces and core,
respectively. In the present work, the load is assumed to be harmonic in time, transversal and does
not depend on the displacement.

Considering the continuity conditions of the displacements at the interfaces between the central
and the face layers, one can express the face displacements u1 and u3 as follows:

u1ðx; tÞ ¼ uðx; tÞ þ
hc

2
bðx; tÞ �

hf

2

@wðx; tÞ
@x

� �
;

u3ðx; tÞ ¼ uðx; tÞ �
hc

2
bðx; tÞ �

hf

2

@wðx; tÞ
@x

� �
: ð13Þ

Based on these interface conditions, it is possible to eliminate all the core variables from the
potential and kinetic energy expressions. So all the variables would be written in terms of face
displacements only. This procedure is applied by many authors [5,7,8]. In the present analysis, the
core variables will be used and the number of independent generalized displacements is reduced to
three, namely u;w and b:
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In this model, the internal forces are, on one hand, the shear stress T that is due to the shear
deformation of the core, on the other hand the following three quantities:

N ¼ N1 þ N2 þ N3; Mb ¼ M2 þ
N1 � N3

2
hc;

Mw ¼ M1 þ M3 �
N1 � N3

2
hf : ð14Þ

According to identity (13) and to definitions (14), the variational formulation (11) can be
rewritten as Z L

0

N
@du

@x
þ

@w

@x

@dw

@x

� �
þ Mb

@db
@x

þ Mw

@2dw

@x2
þ T

@dw

@x
þ db

� �	 

dx

¼ dPext � dPacc: ð15Þ

Thus, the stress state in the sandwich is described by four scalar quantities: the total axial force N;
the shear force T and two bending moments Mb and Mw: The global moment Mb–Mw is
recovered only if the virtual displacement satisfies the Bernoulli condition db ¼ �@dw=@x:

Because the axial inertial term and the axial excitation force are disregarded, variational
equation (15) implies that the normal force N does not depend on x: Thus the balance of
momentum (15) is split in two equations as follows:

Nðx; tÞ ¼ 2Ef Sf eþ ScEc�
@e
@t

¼ N0ðtÞ;

e ¼
@u

@x
þ

1

2

@w

@x

� �2

; ð16aÞ

Z L

0

N
@w

@x

@dw

@x
þ Mb

@db
@x

þ Mw
@2dw

@x2
þ T

@dw

@x
þ db

� �	 

dx

¼
Z L

0

F ðx; tÞdw dx � ð2rf Sf þ rcScÞ
Z L

0

@2w

@t2
dw dx;

Mb ¼ IcY�
@

@x

@b
@t

	 

þ

Ef Sf hc

2
hc

@b
@x

� hf

@2w

@x2

� �
;

Mw ¼ Ef 2If þ
Sf h2

f

2

 !
@2w

@x2
�

Ef Sf hchf

2

@b
@x

;

Tðx; tÞ ¼
Sc

2ð1 þ ucÞ
Y�

@b
@t

þ
@

@x

@w

@t

	 

: ð16bÞ

In summary, one has to find exact or approximate solutions of an integro-differential system,
which include Eqs. (16), (6) and (10). As compared with the few papers about the non-linear
behaviour of viscoelastic sandwich structures [29–35], the key point is the account of a general
viscoelastic modelling for the core.
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3. Harmonic approximate solutions

In this paper, the analysis is limited to periodic responses to a transverse harmonic excitation
Fðx; tÞ ¼ FðxÞcosðotÞ or to free vibrations. With a view to obtain the simplest approximate
analysis, the dependence in time and in space has to be specified in a very restrictive way. So the
deflection will be assumed to be harmonic in time, parallel to a single mode in space and its
complex amplitude being arbitrary. Eqs. (16a) for the axial quantities uðx; tÞ and Nðx; tÞ will be
solved exactly: this is possible for straight members or flat plates within the von Karman
framework, if the axial inertia term is neglected. The bending equations (16b) will be reduced to a
single complex equation, by using the harmonic balance method and a one-mode Galerkin
approximation in space. This will lead to a non-linear frequency–amplitude relationship, that will
govern the non-linear viscoelastic response. Here, the analysis begins with the harmonic balance
reduction to take advantage of the simplicity of the viscoelastic law for harmonic motions. Note
that this approach differs slightly from the current practice for non-linear structural vibrations,
that was used in most of previous studies [29–33]: generally a multimode Galerkin approximation
is first performed, that is sometimes followed by a harmonic balance reduction to characterize the
periodic solutions.

3.1. Linear vibration mode and modal approximation

The linear vibration mode corresponds to the eigenmode fW ðxÞ;BðxÞg of the undamped
sandwich beam. This eigenmode and the corresponding eigenfrequency o0 satisfy the following
eigenvalue problem:Z L

0

½MbdB0 þ MwdW 00 þ TðdW 0 þ dBÞ� dx ¼ ð2rf Sf þ rcScÞo2
0

Z L

0

Wd Wdx; ð17Þ

where

Mb ¼ Ecð0ÞIc þ
Ef Sf h2

c

2

� �
B0 �

Ef Sf hchf

2
W 00;

Mw ¼ Ef 2If þ
Sf h2

f

2

 !
W 00 �

Ef Sf hchf

2
B0;

T ¼ Gcð0ÞScðW 0 þ BÞ;

Gcð0Þ ¼
Ecð0Þ

2ð1 þ ncÞ
ð18Þ

in which Ecð0Þ (respectively Gcð0Þ) is the Young’s (respectively shear) modulus of delayed elasticity
and nc; the Poisson ratio of the viscoelastic core, is assumed to be frequency independent. The
unknowns fW ðxÞ;BðxÞ;o0g are real quantities. Eigenvalue problem (17), (18) can be solved
numerically by finite element method using a specific finite element [11,12,14,16,18,20,21] or
analytically by various procedures. An exact analytical solution in the simply supported case is
presented in the Appendix A and it will be used in the non-linear analysis.

For the study of non-linear harmonic vibrations, the response is assumed to be harmonic and
proportional to the linear vibration mode fW ðxÞ;BðxÞg: Based on the one-mode Galerkin’s
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procedure, the deflection and rotation functions are sought in the following forms:

wðx; tÞ ¼ AW ðxÞeiot þ CC;

bðx; tÞ ¼ ABðxÞeiot þ CC; ð19Þ

where A is a complex unknown amplitude. This approximation assumes that the frequency o is
near the real frequency o0 associated to the undamped beam. This allows the consideration that
the viscoelastic shear modulus at o does not differ significantly from its values for o0: This
approximation will also be done in the following for EcðoÞ and Ecð2oÞ:

3.2. Solution of the axial problem

As usual with von Karman geometrical models, axial problem (16a) is linear with respect to the
axial unknowns uðx; tÞ and Nðx; tÞ: From approximation (19), the non-linear term in the strain
induces harmonics 0 and 2o: Thus the axial response can be split in the same manner:

uðx; tÞ ¼ jAj2u0ðxÞ þ fA2u2oðxÞe2iot þ CCg;

Nðx; tÞ ¼ jAj2N0ðxÞ þ fA2N2oðxÞe2iot þ CCg; ð20Þ

where u0ðxÞ and N0ðxÞ are time independent and u2oðxÞ and N2oðxÞ are the amplitudes of the
2o-harmonic response. Clearly, they are characterized by the following linear equations:Z L

0

u00du0 dx ¼ �
Z L

0

ðW 0Þ2du0 dx;

N0ðxÞ ¼ ð2Ef Sf þ Ecð0ÞScÞðu00 þ ðW 0Þ2Þ; ð21Þ

Z L

0

u02odu0 dx ¼ �
Z L

0

1
2
ðW 0Þ2du0 dx;

N2oðxÞ ¼ ð2Ef Sf þ Ecð2oÞScÞ u0
2o þ 1

2ðW
0Þ2

 �
: ð22Þ

It is not difficult to solve these equations. For immovable ends ðuð0Þ ¼ uðLÞ ¼ 0Þ; the solutions of
Eqs. (21), (22) can be written in the following form:

u0ðxÞ ¼
x

L

Z L

0

ðW 0ðsÞÞ2 ds �
Z x

0

ðW 0ðsÞÞ2 ds;

u2oðxÞ ¼
u0ðxÞ

2
;

N0ðxÞ ¼
ð2Ef Sf þ Ecð0ÞScÞ

L

Z L

0

ðW 0ðsÞÞ2 ds;

N2oðxÞ ¼
ð2Ef Sf þ Ecð2oÞScÞ

2L

Z L

0

ðW 0ðsÞÞ2 ds: ð23Þ

As for the case of the cantilever sandwich beam (NðLÞ ¼ 0 or Nð0Þ ¼ 0), one finds easily that the
normal forces are zero: N0ðxÞ ¼ N2oðxÞ ¼ 0:

Because of the specific geometry of a straight beam, the displacement amplitudes u0ðxÞ and
u2oðxÞ are real, but not the corresponding stress N2oðxÞ; which is due to the influence of the
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complex modulus Ecð2oÞ: Two different moduli appear in Eqs. (21), (22), this follows directly
from representation (9) of the viscoelastic law. In accordance with the previous approximations,
Ecð2oÞ will be replaced by Ecð2o0Þ:

3.3. The non-linear frequency–amplitude relationship

The aim of this paper is to get an approximate solution of the non-linear bending equation
(16b). This is done by coupling the one-mode Galerkin approximation with the harmonic balance
method. Inserting Eqs. (19)–(22) into the variational bending equation (16b) and assuming that
dW ¼ W ðxÞe�iot; db ¼ BðxÞe�iot an amplitude equation following various harmonics is obtained.
Based on harmonic balance method, the following frequency–amplitude equation is obtained:

�o2MA þ KA þ Knl %AA2 ¼ Q: ð24Þ

The four constants appearing in the amplitude equation (24) are functions of the real linear mode
W ðxÞ;BðxÞ; of the solution (23) of the axial problem and of the data. They are given by

M ¼ ð2rf Sf þ rcScÞ
Z L

0

W 2ðxÞ dx;

K ¼
Z L

0

Ef 2If þ
Sf h2

f

2

 !
W

002 � Ef Sf hf hcB
0W 00

(

þ Ecðo0ÞIc þ
Ef Sf h2

c

2

� �
B

02 þ Gcðo0ÞScðW 0 þ BÞ2
)

dx;

Knl ¼
Z L

0

ðN0 þ N2oÞðW 0Þ2 dx;

Q ¼
Z L

0

FðxÞW ðxÞ dx: ð25Þ

The real number M corresponds to a modal mass and Q to a modal force which is also real
because of the assumption F ðx; tÞ ¼ F ðxÞ cosot: K and Knl represent the linear and non-linear
modal stiffness coefficients, respectively. These latter coefficients are complex because of the
viscoelastic moduli. The analytical computation of these coefficients is straightforward in the
simply supported case and reported in Appendix B. Of course, such computations could also be
achieved by the finite element method for more complicated cases. This will be presented later for
the analysis of viscoelastic sandwich plates and shells.

4. Free vibration analysis from the amplitude equation

In the previous section, it has been established that, close to resonance, the non-linear vibration
of a viscous sandwich beam is approximately governed by the complex amplitude equation (24).
In this section, the free vibration problem is discussed from the latter amplitude equation for
Q ¼ 0: This will explain the physical meaning of the real and imaginary parts of the modal
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stiffness constants:

K ¼ KR þ iKI ; Knl ¼ KR
nl þ iKI

nl : ð26Þ

4.1. Linear analysis and loss factor

The linearized version of the amplitude equation (24) leads to an approximate value of the
complex eigenfrequency that can written in the following classical form:

o2 ¼ K=M ¼ O2
l ½1 þ iZl�; ð27Þ

where Zl is the loss factor and Ol is the linear frequency. So, the viscoelastic frequency and the loss
factor of the viscoelastic structure are related to the real and imaginary parts of the linear stiffness
by the following relationship:

O2
l ¼ KR=M; Zl ¼ KI=KR: ð28Þ

The detailed expressions of these quantities are presented in Appendix B. They coincide with those
predicted by the modal stain energy method [10], when it is based on the undamped mode.

4.2. Non-linear response, backbone curve, non-linear loss factor

For free vibration analysis, the amplitude equation (24) leads to a relationship between the
complex frequency o2 and the real amplitude a ¼ jAj: The non-linear frequency and the non-
linear loss factor are defined in the same way as the corresponding linear quantities and given by

o2 ¼ O2
nlð1 þ iZnlÞ;

O2
nl ¼ O2

l 1 þ CR a

h

� �2
� �

; CR ¼
KR

nl

MO2
l

h2;

Znl ¼ Zl

1 þ CI ða=hÞ2

1 þ CRða=hÞ2
; CI ¼

KI
nl

MZlO
2
l

h2; ð29Þ

where h is the thickness of the sandwich beam. For simplicity, non-dimensional constants CR and
CI have been introduced instead of the real and imaginary parts of the non-linear stiffness.

Hence the amplitude equation (24) permits one to define a frequency and a loss factor, that
depend non-linearly on the vibration amplitude. With the second relation (29b), the classical
parabolic approximation of the backbone curve (2) is recovered. The non-linear frequency may be
greater or lower than the linear one, according to the sign of the constant CR:

Furthermore, a new amplitude–loss factor relation has been deduced which is given by the
rational fraction (29c). The loss factor is a decreasing function of the amplitude if CR is greater
than CI and increasing in the opposite case.

4.3. Numerical applications

To our knowledge, the concept of an amplitude-dependent damping has not yet been presented,
except in a recent paper by Ganapathi et al. [34]. For the sake of validation and of comparison,
the case of the simply supported beam is considered as in Ref. [34], the geometrical and material
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data being given in Table 1. The axial displacement is assumed to be zero at the ends of the beam.
The damped core modulus is given by the following simple expression:

Ec ¼ E0ð1 þ iZcÞ; ð30Þ

where the real modulus E0 and the material loss factor Zc do not depend on the frequency.
With the chosen boundary conditions, there are simple exact solutions of the linear

eigenproblem (17)–(18) as well as closed form expressions of the stiffness constants K and Knl ;
of the frequency and of the loss factor. They are presented in Appendices A and B.

Three values of the thickness ratio hf =hc ð1=7; 1; 7Þ are considered and three values of the shear
modulus G0 ð2:5; 25; 2500 MPaÞ: Note that the kinematical assumptions of Section 2.1 are
accurate only for the smallest thickness ratio ð1=7Þ and for the two smallest values of the shear
modulus (2.5, 25), see Ref. [21]. In Table 2, the numerical values of the linear quantities Zl ; Ol and
of the non-dimensional constants CR and CI are presented. As the constant CR is positive, the
frequency increases with the vibration amplitude. This increase is significant because o2 at least
doubles (i.e., CR

X4) for a maximal deflection equal to the thickness (i.e. a=h ¼ 1=2 with definition
(19) of the amplitude). One can note that the constant CR is much larger than CI in the soft core
cases (G0 ¼ 2:5 or 25 MPa). Indeed, it is obvious from formula (B.9) that the imaginary part of
Knl can be neglected in these cases. Hence, for soft cores the non-linear stiffness Knl can be
assumed real, it depends on the face properties and its approximated value is given by the
following formula:

KnlE3Ef Sf
p4

4L3
: ð31Þ

Because CIE0 in the case of soft cores, the loss factor is a decreasing function of the vibration
amplitude, see formula (29).

The variations of the loss factor with the vibration amplitudes are presented in Figs. 2 and 3, for
the chosen values of the thickness ratio and of the core modulus. Results obtained by Ganapathi
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Table 1

Material and structural data. Free vibration test

Elastic layers

Young’s modulus: 45:54 GPa

The Poisson ratio: 0.33

Mass density: 2040 kg=m3

Viscoelastic layer

Elasticity modulus is varied as 7.2, 72.5, 7250 MPa

The Poisson ratio: 0.45

Mass density: 1200 kg=m3

Material loss factor: 0.5

Aspect ratios

Thickness ratio is varied as 1/7, 1, 7

Aspect ratio ðL=hÞ 70
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et al. [34] using finite elements and an iterative QR method are reported for comparison. Clearly,
there is a very good agreement between the two approaches, except in the stiff core cases. As
explained previously, the loss factor decreases with the amplitude in soft core cases. Indeed, in
these cases the non-linear effects are mainly due to the axial stress in the elastic layer. This implies
a real value of the non-linear stiffness Knl : Hence, this non-linearity is not affected by the
damping, and the dependence of the loss factor with respect to the amplitude follows only from
the amplitude dependence of the frequency (see Eq. (29) for CI ¼ 0), which leads to a decrease of
Znl : For stiff cores, the core axial stiffness cannot be neglected and the imaginary part CI becomes
significant: this implies the increase of the loss factor observed in Fig. 3.

The agreement between the present results and those of Ref. [34] can be considered as a
validation of the two approaches. Although they are quite different and there exist restrictive
assumptions in each one.

4.4. Sandwich with soft and thin core

Many papers and many applications are devoted to sandwich beams with a soft and thin core
(hc{hf ; E0{Ef ). A discussion of this case is now presented, to specify the influence of the
classical adimensional shear parameter g: Further, the complex modulus is not frequency
dependent, as in Eq. (30). In classical linear damping analyses [2,5,8,11], the results depend mainly
on two adimensional parameters, that are called the shear parameter and the geometrical
parameter, respectively

g ¼
2G0Sc

Ef Sf

L

hc

� �2

;

Y ¼
hf þ hc

2

� �2
Sf

If

: ð32Þ
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Table 2

Analytical values of the linear frequency Ol ; of the linear loss factor Zl and the non-dimensional constants CRand CI for

various core properties

hf =hc Gc (MPa) Ol ðs�1Þ Zl CR CI

1/7 2.5 1.51 3:02 � 10�1 9.7 2:97 � 10�3

25 2.25 6:85 � 10�2 4.39 5:92 � 10�2

2500 2.58 6:27 � 10�2 4.55 4.91

1 2.5 1.79 2:67 � 10�1 16.38 8:12 � 10�4

25 2.66 7:68 � 10�2 7.40 1:27 � 10�2

2500 2.90 3:97 � 10�3 6.54 20.72

7 2.5 2.35 1:30 � 10�1 11.82 1:72 � 10�4

25 2.72 2:12 � 10�2 8.78 7:83 � 10�3

2500 2.78 2:50 � 10�4 8.47 63.58

Simply supported sandwich beam. Fixed axial displacement. Geometrical and material data of Table 1. Study of the

first vibration mode.
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With the previous assumptions, the frequency Ol ; the loss factor Zl and the constant
CR can be written as functions of the parameters g; Y and of the Euler–beam frequency
OE (Appendix C). By considering the case of a rectangular cross-section, the value of
the geometrical parameter Y is about 3. So, the frequency Ol ; the loss factor Zl and the
constant CR depend only on the shear parameter g: These quantities can be written
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Fig. 2. Loss factor ratio (Znl=Zl) as a function of the vibration amplitude (a=h) for different core properties. Data of

Table 1. Soft core cases. Simply supported beam. Fixed axial displacement. Study of the first vibration mode.

(J) Ganapathi et al. results [34]; (continuous line) present analytical results.
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as follows:

Ol ¼ OE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

3g

ððnpÞ2 þ gÞ

s
;

Zl ¼ Zc

3ðnpÞ2g

ððnpÞ4 þ 5ðnpÞ2g þ 4g2Þ
;

CR ¼
36ððnpÞ2 þ gÞ

ðnpÞ2 þ 4g
: ð33Þ

Figs. 4–6 present the variation of the loss factor ratio Zl=Zc; of the constant CR and of the
frequency ratio Ol=OE ; with respect to the shear parameter g: A good agreement is obtained
between the results of the ratios Ol=OE ; Zl=Zc and those obtained by Rao [5]. One can note that the
non-linear constant CR decreases with the shear parameter g and varies from 9 to 36.
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Fig. 3. Loss factor ratio (Znl=Zl) as a function of the vibration amplitude (a=h) for different core properties. Data of

Table 1. Stiff core case: G0 ¼ 2500 MPa: Simply supported beam. Fixed axial displacement. Study of the first vibration

mode. (J) Ganapathi et al. results [34]; (continuous line) present analytical results.

Fig. 4. Loss factor ratio Zl=Zc as a function of the shear parameter g: Thin and soft core approximation. Simply

supported beam with rectangular section. Fixed axial displacement. Study of the three first vibration modes.
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5. Forced vibration analysis from frequency–amplitude equation

In this section, forced vibrations are studied from the reduced frequency–amplitude
equation (24). The first aim is to check that the approximate model keeps the main features of
classical non-linear resonance analyses [22]. Next, two examples will be presented, especially to
illustrate the influence of the axial boundary conditions on the response curve.

5.1. Solving the frequency–amplitude equation

The non-linear equation (24) can be simply rewritten and solved in the general case where Q is
not equal to zero. This Q is assumed to be real, which corresponds to a choice of the forcing
phase. The complex numbers A; K and Knl and Eq. (24) are rewritten as

� o2rM þ rjK jeij þ r3jKnl jeic ¼ Qe�iy;

A ¼ reiy;

K ¼ jK jeij;

Knl ¼ jKnl jeic: ð34Þ
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Fig. 5. Constant CR as a function of the shear parameter g: Thin and soft core approximation. Simply supported beam

with rectangular section. Fixed axial displacement. Study of the three first vibration modes.

Fig. 6. Frequency ratio Ol=OE as a function of the shear parameter g: Thin and soft core approximation. Simply

supported beam with rectangular section. Fixed axial displacement. Study of the three first vibration modes.
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Next, the complex equation (34) is split into real and imaginary parts

� o2rM þ rjK j cosjþ r3jKnl j cosc ¼ Q cos y;

rjK j sin jþ r3jKnl j sin c ¼ �Q sin y: ð35a;bÞ

Combining the last equations (i.e. ð35aÞ2 þ ð35bÞ2 ¼ Q2Þ and after some manipulation, one
obtains the following frequency–amplitude relation:

o4M2 � 2ao2M þ b ¼ 0; ð36Þ

where

a ¼ jK j cosjþ r2j Knl j cosc;

b ¼ jK j2 þ r4jKnl j
2 þ 2r2jKKnl j cosðj� cÞ �

Q2

r2
: ð37Þ

By this way, the frequency–amplitude curve is obtained in the form oðrÞ from Eqs. (37) and (38).

oðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b

pq
: ð38Þ

5.2. Numerical applications

Two numerical illustrations will be presented shortly. They mainly differ by the axial boundary
condition that strongly influences the non-linearity of the response.

5.2.1. Cantilever sandwich beam
This example concerns a cantilever sandwich beam, which has been studied quite extensively

from theoretical and experimental points of view [5,10,19]. The beam dimensions and material
properties are recalled in Table 3: this case concerns sandwich beams with a thin and soft core.
The core viscoelastic law is accounted for by a complex constant modulus, as in Eq. (30). The
boundary conditions are: uð0Þ ¼ 0;wð0Þ ¼ 0;bð0Þ ¼ 0 and NðLÞ ¼ 0;MwðLÞ ¼ 0; MbðLÞ ¼ 0: The
key point is the axial boundary condition NðLÞ ¼ 0; as explained in Section 3.2, and this implies
that the normal forces N0ðxÞ; N2oðxÞ are zero. Therefore, the non-linear stiffness Knl given by
Eq. (25) is also zero. So, because of the axial boundary conditions NðLÞ ¼ 0; the non-linear
frequency–amplitude relationship (24) is reduced to the classical linear resonance equation:

�o2MA þ KA ¼ Q: ð39Þ

The vibrations of this viscoelastic cantilever beam have been studied by Mead [2] for Qa0 and by
Rao for Q ¼ 0 [5]. In Ref. [5], the complex eigenvalues problem has been solved analytically for
various boundary conditions. This leads to a better approximation of the loss factor Zl and of the
eigenfrequency Ol than formula (28), which is based on a modal approximation with the
undamped mode. That is why, instead of Eq. (28), Rao’s formulae have being used to define Zl

and Ol and next (27) (39) to define the resonance curve rðoÞ for the first eigenmode which is
reported in Fig. 7.
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5.2.2. Simply supported sandwich beam

The present reduction analysis has been claimed to apply to any viscoelastic model. According
to a generalized Maxwell model, a frequency-dependent viscoelastic modulus is considered in this
example. All coefficients of this model have been obtained from experimental tests on a pure
polymer, as described in Ref. [36]. These material properties are also temperature dependent and
this will also permit us to discuss the influence of the temperature on the response curve of a steel/
polymer/steel sandwich. The beam dimensions and the main material properties are presented in
Table 4: this is also a case of thin and soft core.

This sandwich beam is simply supported and the axial displacement is fixed at the ends of the
beam ðuð0Þ ¼ uðLÞ ¼ 0Þ: From formula (A.5), the first eigenfrequency o0 ðn ¼ 1Þ is equal to
2p�74:23: Here, the analysis is always limited to this first eigenmode. The obtained values for
o2 ¼ K=M (i.e., in the linear range) are presented in Table 5 for various temperatures and

ARTICLE IN PRESS

0

0.1

0.2

0.3

0.8 1 1.2

ω/Ωω/Ω

r(
π

)/
h

ηc=0.6

ηc=0.1

l

Fig. 7. Cantilever beam. Data of Table 3. Q ¼ 10: Resonance curves for Zc ¼ 0:1 and Zc ¼ 0:6 Fig. 8. Supported beam.

Data of Table 4. Frequency-dependent material. Temperature: 60C; linear and non-linear frequency–amplitude

curves.

Table 3

Cantilever beam. Geometrical and material data

Elastic layers

Young’s modulus: 6:9 � 1010 Pa

The Poisson ratio: 0.3

Mass density: 2766 kg=m3

Thickness: 1:524 mm

Viscoelastic layer

Delayed elasticity modulus 1794 � 103 Pa

The Poisson ratio: 0.3

Mass density: 968:1 kg=m3

Thickness: 0:127 mm

Whole beam

Length 177:8 mm

Width 12:7 mm
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compared with those obtained from Rao’s formula [5]. The two sets of results are very close,
except for the imaginary part (damping) at 30C; where there is a discrepancy of 15%: This
comparison yields a measure of the error due to the real mode approximation (19). These results
are consistent with previous ones comparing the modal strain energy method with a real and a
complex mode; see for instance Ref. [10]. One can refer also to Refs. [19,21] for a few comparisons
of such models with experiments.

Considering a case with a soft core, the non-linear effects are due to the axial stresses in the
elastic faces. Thus, the non-linear stiffness Knl can be assumed to be real and given by Eq. (31).
The validity of the latter approximation is checked in Table 6 for a wide range of temperatures. In
Fig. 8, the linear and non-linear frequency–amplitude curves rðoÞ at 60C are presented for
various amplitudes of excitation ðQ ¼ 0; 5; 10; 15Þ: The non-linear effect appears clearly and bends
to the right the resonance peaks. Such curves are well known in the literature concerning non-
linear vibrations [22]. Thus the present theory is consistent with these classical non-linear
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Table 4

Simply supported beam

Elastic layers

Young’s modulus: 2:1 � 1011 Pa

Poisson’s ratio: 0.3

Mass density: 7800 kg=m3

Thickness: 0:6 mm

Viscoelastic layer

Delayed elasticity modulus 27:216 � 105 Pa

Poisson ratio: 0.44

Mass density: 1200 kg=m3

Thickness: 0:045 mm

Whole beam

Length 178 mm

Width 10 mm

Geometrical and material data. Since the core modulus EcðoÞ involves too many coefficients, the detail of this function

are not presented.

Table 5

Simply supported beam

Present method Rao’s formula [5]

Temperature Real part Imaginary part Real part Imaginary part

30 2:78 � 105 2:78 � 104 2:87 � 105 2:40 � 104

50 2:55 � 105 1:31 � 104 2:57 � 105 1:28 � 104

80 2:26 � 105 1:29 � 104 2:27 � 105 1:27 � 104

Data of Table 4. K=M values for the first mode.
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resonance analyses. The influence of the temperature on the response curves is shown in Fig. 9.
The maximal amplitude is smaller at 30C; because the material damping is greater for this
temperature: indeed the core damping Zc; estimated at the beam frequency, is respectively 0.53,
0.21, and 0.19 for 30C; 50C and 80C:
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Table 6

Simply supported beam

Temperature ðÞ Real part of Knl Imaginary part of Knl

10 1:63 � 1010 8:70 � 104

20 1:63 � 1010 2:10 � 104

60 1:63 � 1010 1:03 � 103

70 1:63 � 1010 1:00 � 103

80 1:63 � 1010 7:94 � 102

Data of Table 4. Values of Knl for the first mode at various temperatures.
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Fig. 8. Simply supported beam. Data of Table 4. Frequency-dependent material. Temperature: 60C linear and non-

linear frequency–amplitude curves.

Fig. 9. Simply supported beam. Data of Table 4. Frequency-dependent material. Non-linear frequency–amplitude

curves at various temperatures with Q ¼ 5:
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The backbone curve associated to ðQ ¼ 0Þ; defines the relationship between the natural
frequency and the amplitude of free undamped vibrations. The stiffness increases with the
deflection and therefore the natural frequency increases as the amplitude increases. This
characterizes a system with hardening behaviour. Classically such response curves imply the
existence of a downward and of an upward jump, when the excitation frequency varies.

6. Conclusion

An analytical study of free and forced vibrations of elastic/viscoelastic/elastic sandwich non-
linear beams has been presented. The beam model and the approximation process have been
designed to provide the simplest but most significant model. The sandwich beam modelling is
accurate for soft and rather thin cores. The approximation process is based on the harmonic
balance method coupled with a one-mode Galerkin approximation. So, it is able to account for
near resonance responses with moderately large amplitude. The modelling holds well, whatever is
the viscoelastic constitutive law.

In this way, a non-linear frequency–amplitude relationship has been deduced, that involves only
a few coefficients. In the free vibration case, only four real numbers are associated with each
vibration mode. Two of them characterize the linear behaviour; this permits one to recover the
linear eigenfrequency and the loss factor. Two other numbers, denoted by CR and CI ; account for
the non-linear effects. The first one CR coincides with the classical backbone constant that
characterizes the amplitude dependence of the frequency. Similarly, this approach permits a
definition of a loss factor that depends also on the amplitude. To the knowledge of the authors,
the concept of an amplitude-dependent loss factor has been discussed only in a recent paper [34]
and the corresponding formula (29) is new. For a harmonic forcing, the theory permits one to
recover classical non-linear resonance curves.

When applied to a sandwich beam with a thin and soft core, this yields a positive value of the
constant CR; the other one CI being about zero. In such a case, the frequency increases with the
amplitude and the loss factor decreases. With a stiffer core, CI can be significant and the loss
factor can increase with the amplitude. As usual for non-linear resonance or post buckling, the
non-linear behaviour depends on axial boundary conditions: for instance if an end is stress free,
the non-linear effects disappear.

The amplitude–frequency relationship obtained is similar to a bifurcation equation. It is likely
that this relation is generic, i.e., it could be valid for the non-linear resonance of any structure with
moderately large damping. By comparison with post buckling, a hardening behaviour can be
expected for plates ðCR > 0Þ and softening for most of curved shells ðCRo0Þ:
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Appendix A. Analytical solution of the eigenvalue problem (17) for simply supported beam

From Eq. (17) and using two integrations by parts, one finds the following equations:

M 0
b � T ¼ 0; ðA:1Þ

ðMwÞ
00 � T 0 ¼ ð2rf Sf þ rcScÞo2

0W : ðA:2Þ

Exact solutions of Eqs. (A.1), (A.2) and of the constitutive equations (18), in the case of a simply
supported beam are sought, the boundary conditions being expressed by W ¼ Mb ¼ Mw ¼ 0: In
this case, Eqs. (A.1), (A.2), (18) have a family of exact solutions in the form

W ðxÞ ¼ sinðkxÞ; BðxÞ ¼ b cosðkxÞ; k ¼
np
L
; ðA:3Þ

where the integer n is the mode number. Inserting Eqs. (18.a), (18.c) and (A.3) into Eq. (A.1), one
gets the number b:

b ¼
ðhchf Ef Sf k3 � 2Gcð0ÞSckÞ

½ðEf Sf h2
c þ 2Ecð0ÞIcÞk2 þ 2Gcð0ÞSc�

: ðA:4Þ

Inserting Eqs. (18), (A.3) and (A.4) into (17) or (A.2), one gets the expression of the linear
frequency

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Ecð0ÞIc þ Ef Sf h2

cÞk
2b2 � 2Ef Sf hchf bk3 þ Ef ð4If þ Sf h2

f Þk
4 þ 2Gcð0ÞScðk þ bÞ2

2ð2rf Sf þ rcScÞ

vuut : ðA:5Þ

Appendix B. Analytical expression of Knl for sandwich beam with immovable ends

The real and imaginary parts of the Young’s and of the shear modulus of the viscoelastic core
are introduced:

Ecðo0Þ ¼ ER
c ðo0Þ þ iEI

c ðo0Þ;

Gcðo0Þ ¼ GR
c ðo0Þ þ iGI

c ðo0Þ: ðB:1Þ

Using these decompositions and Eqs. (25) and (27) one obtains Ol and Zl as functions of the linear
mode

O2
l ¼

1

M

Z L

0

Ef 2If þ
Sf h2

f

2

 !
W

002 � Ef Sf hf hcB
0W 00

(

þ ER
c ðo0ÞIc þ

Ef Sf h2
c

2

� �
B

02 þ GR
c ðo0ÞScðW 0 þ BÞ2

)
; ðB:2Þ

Zl ¼
1

MO2
l

Z L

0

EI
c ðo0ÞIcB

02 þ GI
c ðo0ÞScðW 0 þ BÞ2

n o
dx: ðB:3Þ
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The axial problems (21), (22) can be solved as follows:

u0
0 þ W

02 ¼ a1;

u0
2o þ 1

2
W

02 ¼ a2; ðB:4Þ

where a1 and a2 are constants. The integration of the latter equations leads to

La1 ¼
Z L

0

u00 dx þ
Z L

0

W
02 dx;

La2 ¼
Z L

0

u02o dx þ
1

2

Z L

0

W
02 dx: ðB:5Þ

For immovable ends, u0ð0Þ ¼ u0ðLÞ ¼ u2oð0Þ ¼ u2oðLÞ ¼ 0; these constants are

a2 ¼
1

2
a1 ¼

1

2L

Z L

0

W
02 dx: ðB:6Þ

The coefficient Knl defined in Eq. (25) can be rewritten as a function of the modal deflection

Knl ¼ ð2Ef Sf þ Ecð0ÞScÞa1

Z L

0

W
02 dx þ ð2Ef Sf þ Ecð2o0ÞScÞa2

Z L

0

W
02 dx: ðB:7Þ

Thus Knl is in form

Knl ¼ ð2Ef Sf þ Ecð0ÞScÞ þ 1
2ð2Ef Sf þ Ecð2o0ÞScÞ

� �
La2

1: ðB:8Þ

Using the decomposition (B.1), one finally deduces that Knl is also in form

Knl ¼ ½6Ef Sf þ 2Ecð0ÞSc þ ðER
c ð2o0Þ þ EI

c ð2o0ÞÞSc�
L

2
a2

1: ðB:9Þ

In the simply supported case presented in Appendix A, the value of a1 is n2p2=2L2:

Appendix C. Simply supported sandwich beam with soft and thin core

Consider that the core modulus is given by formula (30). Neglecting the term EcIc and using
Eqs. (A.4), (A.5), (31) and some manipulations, one finds that the constant b; the frequency Ol ;
the loss factor Zl and the constant CR are functions of the shear parameter g and of the geometric
one Y :

b ¼
hf ðnpÞ

2 � ghc

hcððnpÞ
2 þ gÞ

;

Ol ¼ OE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

Yg

ððnpÞ2 þ gÞ

s
;

Zl ¼ Zc

ðnpÞ2gY

ððnpÞ4 þ ðnpÞ2ð2 þ Y Þg þ ð1 þ Y Þg2Þ
;

CR ¼ Y
h

hf þ hc

� �2
3

1 þ ðYg=ððnpÞ2 þ gÞÞ
; ðC:1Þ
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where OE is the Euler beam frequency, given by

OE ¼
np
L

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ef If

2rf Sf þ rcSc

s
: ðC:2Þ
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